Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel



## **Bachelorprüfung**

Prüfungsfach: Werkstoffe des Bauwesens II am: 30.06.2015

Die Aufgaben sind nachvollziehbar (mit Rechengang) zu lösen. Die Antworten sind zu begründen.

Hilfsmittel: ausschließlich Taschenrechner!

| NAME:                   |  |
|-------------------------|--|
| MATRNR.:                |  |
|                         |  |
| Mögliche Punktzahl: 100 |  |

Erreichte Punktzahl:

Note:

. . . . . . . . . . . .

### Gesteinskörnung (9)

#### Aufgabe 1: (4 Punkte)

- a) Welche beiden Arten von Feuchte unterscheidet man im Zusammenhang mit Gesteinskörnung?
- b) Welche Feuchtigkeitsart muss immer im Betonentwurf berücksichtigt werden?
- c) Bei der Herstellung welcher Betone muss auch die zweite Feuchtigkeitsart bekannt sein?

### Aufgabe 2: (3 Punkte)

Benennen Sie die Gesteinskörnung nach ihrer Korngröße:

| Korngröße  | Gebrochene Gesteinskörnung | Ungebrochene Gesteinskörnung |
|------------|----------------------------|------------------------------|
| 0 – 4 mm   |                            |                              |
| 4 – 32 mm  |                            |                              |
| 32 – 63 mm |                            |                              |

#### Aufgabe 3: (2 Punkte)

Im Labor wird folgende Sandprobe 0/2 mm mit dichtem Gefüge hinsichtlich Feuchtegehalt und Schüttdichte untersucht.

- Trockenmasse: 17,9 g

- Eigenfeuchte der Probe: 3,54 %

Bei loser Schüttung in einen Behälter ergibt das Volumen dieser Trockenmasse:
 12,5 cm³

- a) Bestimmen Sie die Feuchtmasse der Probe!
- b) Bestimmen Sie die Schüttdichte ρ<sub>s</sub>!

## Mauerwerk und Künstliche Steine (14)

### Aufgabe 4: (3 Punkte)

Nennen Sie jeweils zwei Möglichkeiten, die Tragfähigkeit von Mauerwerk zu steigern.

- Stofflich:
- Konstruktiv:
- Ausführung:

### Aufgabe 5: (4 Punkte)

- a) Nennen Sie zwei Beispiele für Ausblühungen an Mauerziegeln!
- b) Wodurch können sie im Mauerwerk verhindert werden?
- c) Wodurch wird das Kalktreiben in Ziegeln verursacht?

### Aufgabe 6: (2 Punkte)

Wie sollen bei mehrlagigem Außenputz die verschiedenen Lagen hinsichtlich der Festigkeit aufgebaut sein (Begründung)?

### Aufgabe 7: (5 Punkte)

- a) Nennen Sie die mineralischen Rohstoffe für die Herstellung von Porenbeton!
- b) Warum wird bei der Herstellung Aluminiumpulver zugegeben?
- c) Was versteht man unter einer Autoklavierung bei der Herstellung von Kalksand- und Porenbetonsteinen?
- d) Warum wird sie beim Herstellen von Kalksandstein und Porenbetonsteinen durchgeführt?

### Mineralische Bindemittel (20)

Aufgabe 8: (1 Punkte)

Erläutern Sie den Begriff "Hydratation"!

Aufgabe 9: (4 Punkte)

Nennen Sie die vier Hauptklinkerphasen in Zement- und Oxidschreibweise!

#### Aufgabe 10: (4 Punkte)

- a) Unter welchen Bedingungen erhärten folgende Bindemittel? Nennen Sie jeweils ein Beispiel!
  - hydraulische Bindemittel:
  - latent-hydraulische Bindemittel:
  - puzzolanische Bindemittel:
- b) Was versteht man im Zusammenhang mit Bindemitteln unter einem inerten Stoff? Nennen sie ebenfalls ein Beispiel!

#### Aufgabe 11: (6 Punkte)

a) Um welchen Zement handelt es sich bei einem CEM II/A-V 32,5 R- NA? Erläutern Sie hierzu die einzelnen Kurzbezeichnungen.

CEM II:

A:

V:

32,5:

R:

NA:

- b) Worin unterscheiden sich ein CEM I NA Sonderzement und ein "normaler" CEM I hinsichtlich ihrer Zusammensetzung?
- c) Wie ist ein CEM III zusammengesetzt?
- d) Weshalb wird bei der Herstellung von Zement Sulfat zugemahlen?

### Aufgabe 12: (5 Punkte)

- a) Wodurch unterscheiden sich chemisch Gipsstein, Anhydrit und Halbhydrat? Geben Sie jeweils hierfür die chemischen Formeln an.
- b) Skizzieren Sie den Kreislauf des Gipses!
- c) Was wird als REA-Gips bezeichnet und wie entsteht REA-Gips?

## Frischbeton und Festbeton (24)

### Aufgabe 13: (6 Punkte)

Neben der Bestimmung des Ausbreitmaßes wurde im Praktikum noch eine zweite Me-thode zur Bestimmung der Konsistenz besprochen.

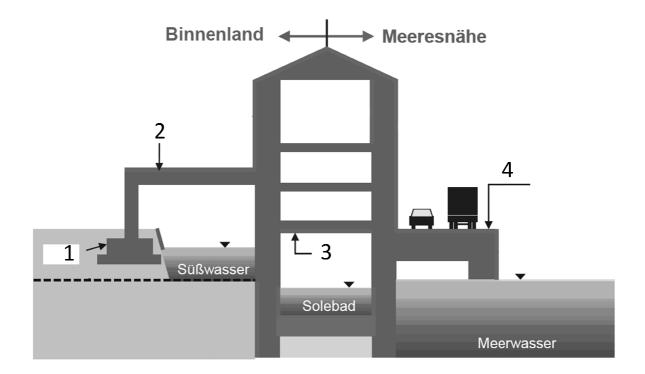
- a) Um welchen Versuch handelt es sich hierbei?
- b) Beschreiben Sie den Versuch stichpunktartig!

### Aufgabe 14: (2 Punkte)

Definieren Sie kurz folgende Begriffe:

- Schwinden
- Kriechen

### Aufgabe 15: (7 Punkte)


- a) Was versteht man unter Karbonatisierung des Betons? Geben Sie die chemische Formel für die Karbonatisierung an!
- b) Wie wird die Karbonatisierung des Betons bestimmt?
- c) Welche Auswirkung hat die Karbonatisierung für Stahlbeton?
- d) Wie muss ein Beton zusammengesetzt sein, damit er möglichst langsam karbonatisiert?
- (2 Maßnahmen!)

### Aufgabe 16: (3 Punkte)

- a) Wie entstehen Kapillarporen im Beton?
- b) Welche Bedeutung haben sie für die Eigenschaften des Betons?

### Aufgabe 17: (6 Punkte)

- a) Ordnen Sie den 4 Pfeilen (1-4) die folgenden Expositionsklasse zu: XC, XD, XF, XM! (je Pfeil eine Expositionsklasse!)
- b) Bezeichnen Sie die Abkürzungen!
- c) Bestimmen Sie welche der hier genannten Expositionsklassen dem Angriff auf Beton und welche dem Angriff auf die Bewehrung zugeordnet werden!



## Glas (4)

## Aufgabe 18: (1 Punkte)

Welche Eigenschaft müssen Glasfasern haben, wenn sie als Bewehrung im Beton verwendet werden sollen?

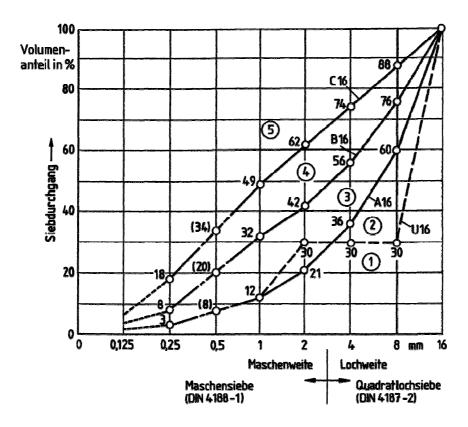
## Aufgabe 19: (3 Punkte)

- a) Aus welchen drei Grundstoffen besteht Fenster-Glas im Wesentlichen?
- b) Nennen Sie drei Glasfehler, die während der Herstellung oder des Gebrauchs entstehen können.

### Betonentwurf (29)

#### Aufgabe 20: (29 Punkte)

Sie sollen für den Neubau des Laborbereiches im Hangar der Halle 150 einen Strahlenschutzbeton für die apparative Chemie entwerfen. Weiterhin soll der Beton einem schwachen chemischen Angriff stand halten können. Die Statik dieses Bauteils erfordert einen Beton mit einer Festigkeitsklasse von C 30/37.


Als Zement soll ein CEM I 32,5 N verwendet werden. Zusätzlich zum Zementgehalt soll der Beton einen Silicastaubanteil ( $\rho_D$  = 1,6 kg/dm³) von 8 M.-% des Zementes und einen Flugascheanteil ( $\rho_V$  = 2,2 kg/dm³) von 10 M.-% besitzen. Zum reibungslosen Einbringen des Betons in die entsprechenden Schalungen soll der Beton der Konsistenzklasse F2 entsprechen.

Als Gesteinskörnung steht Ihnen Kalkstein ( $\rho_K = 2,65 \text{ kg/dm}^3$ ) oder Baryt ( $\rho_B = 4,15 \text{ kg/dm}^3$ ) zur Verfügung. Die Eigenfeuchte der Fraktion 0/4 beträgt für beide Gesteinskörnungen 1,0 M.-%. Die Sollsieblinie soll einer grobkörnigen Sieblinie mit einem Größtkorn von 16 mm entsprechen. Der anzustrebende Luftgehalt ist sinnvoll zu wählen.

|            | Siebrückstand in Gramm                      |       |       |       |       |       |        |        |       |  |  |  |  |
|------------|---------------------------------------------|-------|-------|-------|-------|-------|--------|--------|-------|--|--|--|--|
|            | auf den Einzelsieben [Sieblochweiten in mm] |       |       |       |       |       |        |        |       |  |  |  |  |
| Korngruppe | 0                                           | 0,125 | 0,250 | 0,5   | 1     | 2     | 4      | 8      | 16    |  |  |  |  |
| 0/4        | 34,0                                        | 36,5  | 107,5 | 106,5 | 78,0  | 120,0 | 17,5   | 0      | 0     |  |  |  |  |
| 4/8        |                                             |       | 0     | 22,5  | 175,0 | 82,5  | 2092,5 | 127,5  | 0     |  |  |  |  |
| 8/16       |                                             |       |       | 0     | 38,5  | 21,0  | 437,5  | 2891,0 | 112,0 |  |  |  |  |

- a) Bestimmen Sie 2 maßgebende Expositionsklassen und alle zugehörigen Mindest- bzw. Maximalwerte!
- b)Welche der beiden Gesteinskörnungen wählen Sie für Ihren Betonentwurf?
- c) Wählen Sie die Grobkörnige Sollsieblinie aus einer der 4 Sieblinien des gegebenen Diagramms und bestimmen Sie mit Hilfe des Unterkornverfahrens die einzelnen Anteile der Kornfraktionen, die Ist-Sieblinie und die Körnungsziffer (**k-Wert)** zur Wasserbestimmung.
- d) Bestimmen Sie aus dem gegebenen Diagramm den Wasseranspruch für 1m<sup>3</sup> Beton!
- e) Bestimmen Sie den Zement-, Silicastaub- und Flugaschegehalt für 1m³ Beton!
- f) Bestimmen Sie die Masse der Gesteinskörnung und das Zugabewasser für 1m³ Beton und fassen Sie alle Bestandteile ihres ermittelten Betons noch einmal zusammen!
- g) Bestimmen Sie die Frischbetonrohdichte!
- h) Welche Vor- bzw. Nachteile ergeben sich aus der Verwendung eines CEM III anstelle eines CEM I? (je eine Nennung!)
- i) Nennen Sie je einen betontechnologischen Vorteil bzw. Nachteil für eine Erhöhung des Silicastaubgehaltes auf 15 M.-%!

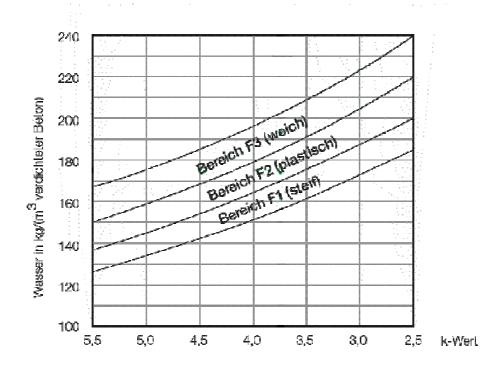
Beachten Sie dabei folgende Anlagen und geben Sie Erläuterungen für gewählte Werte an. Nutzen Sie die Möglichkeit in die Diagramme zu zeichnen, um Werte kenntlich zu machen. Anlagen:



| Konsistenzbeschreibung | Klasse | Wert        |
|------------------------|--------|-------------|
| sehr steif             | •      | -           |
| steif                  | F1     | ≤ 340       |
| plastisch              | F2     | 350 bis 410 |
| weich                  | F3     | 420 bis 480 |
| sehr weich             | F4     | 490 bis 550 |
| fließfähig             | F5     | 560 bis 620 |
| sehr fließfähig        | F6     | ≥ 630 %     |



<sup>1)</sup> Bei hochfestem Beton verliert der Einfluss der Zementnormdruckfestigkeit an Bedeutung.


| Klassenbezeichung      | Beschreibung der<br>Umgebung                                      | Bespiele für die Zuordnung von<br>Expositionsklassen                                                                                                  |
|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Kein Korrosions- ode | er Angriffsrisiko                                                 |                                                                                                                                                       |
| X0                     | Alle Umgebungsbedingungen außer XF und XA                         | Unbewehrte Fundamente ohne Frost, unbewehrte Innenbauteile                                                                                            |
| 2 Korrosion, ausgelöst | durch Carbonatisierung                                            |                                                                                                                                                       |
| XC1                    | trocken oder ständig feucht                                       | Beton in Innenräumen                                                                                                                                  |
| XC2                    | nass, selten trocken                                              | Beton der ständig in Wasser getaucht ist,<br>Wasserbehälter, Gründungsbauteile                                                                        |
| XC3                    | mäßige Feuchte                                                    | offene Hallen, gewerbliche Küchen, Bäder,<br>Wäschereien, Viehstelle                                                                                  |
| XC4                    | wechselnd nass und trocken                                        | Außenbauteile mit direkter Beregnung                                                                                                                  |
|                        | durch Chloride, ausgenommen M                                     |                                                                                                                                                       |
| XD1                    | mäßige Feuchte                                                    | Betonoberflächen, die chlorhaltigem<br>Sprühnebel ausgesetzt sind, Einzelgaragen                                                                      |
| XD2                    | nass, selten trocken                                              | Solebäder, Beton, der chlorhaltigen<br>Industrieabwässern ausgesetzt ist                                                                              |
| XD3                    | wechselnd nass und trocken                                        | Teile von Brücken mit Spritzwasser,<br>Fahrbahndecken, Parkdecks                                                                                      |
| 4 Korrosion, ausgelöst | durch Chloride aus Meerwasser                                     |                                                                                                                                                       |
| XS1                    | salzhaltige Luft, aber kein<br>direkter Kontakt zum<br>Meerwasser | Außenbauteile in Küstennähe                                                                                                                           |
| XS2                    | ständig unter Wasser                                              | Bauteile in Hafenanlagen (ständig unter Wasser)                                                                                                       |
| XS3                    | Tidebereich, Spritzwasser- und Sprühnebelbereiche                 | Kaumauern in Hafenanlagen                                                                                                                             |
| 5 Frostangriff mit und |                                                                   |                                                                                                                                                       |
| XF1                    | mäßige Wassersättigung ohne<br>Taumittel                          | Außenbauteile                                                                                                                                         |
| XF2                    | mäßige Wassersättigung mit<br>Taumittel                           | Betonbauteile im Sprühnebelbereich von<br>Meerwasser, Bauteile im Sprühnebel- und<br>Spritzwasserbereich von<br>taumittelbehandelten Verkehrsflächen, |
| XF3                    | hohe Wassersättigung ohne                                         | soweit nicht F4 offene Wasserbehälter, Bauteile in der                                                                                                |
| XF4                    | Taumittel hohe Wassersättigung mit                                | Wasserwechselzone<br>Verkehrsflächen mit Taumitteln,                                                                                                  |
|                        | Taumittel                                                         | Meerwasserbauteile in der<br>Wasserwechselzone, Räumerlaufbahnen<br>von Kläranlagen                                                                   |
| 6 Chemischer Angriff   |                                                                   |                                                                                                                                                       |
| XA1                    | chemisch schwach<br>angreifende Umgebung                          | Behälter von Kläranlagen, Güllebehälter                                                                                                               |
| XA2                    | chemisch mäßig angreifende<br>Umgebung                            | Bauteile in betonangreifenden Böden                                                                                                                   |
| XA3                    | chemisch stark angreifende<br>Umgebung                            | Industrieabwasseranlagen mit chemisch angreifenden Abwässern                                                                                          |
| 7 Betonkorrosion durc  | h Verschleißbeanspruchung                                         |                                                                                                                                                       |
| XM1                    | mäßige<br>Verschleißbeanspruchung                                 | Industrieböden mit Beanspruchung durch luftbereifte Fahrzeuge                                                                                         |
| XM2                    | starke<br>Verschleißbeanspruchung                                 | Industrieböden mit Beanspruchung durch luft- oder gummibereifte Gabelstapler                                                                          |
| XM3                    | sehr starke<br>Verschleißbeanspruchung                            | Industrieböden mit Beanspruchung durch<br>elastomer- oder stahlrollenbereifte<br>Gabelstapler oder Kettenfahrzeuge                                    |

|     |                                                                                                   | Kein                      |       | Bewehrungskorrosion |               |           |            |            |              |                         |     |              |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|---------------------------|-------|---------------------|---------------|-----------|------------|------------|--------------|-------------------------|-----|--------------|--|--|--|
|     |                                                                                                   | Angriffs-<br>risiko durch | durch | Karbonat            | tisierung ver | rursachte |            | durch C    | hloride veru | rsachte Korrosion       |     |              |  |  |  |
|     |                                                                                                   | Korrosion                 |       | Ko                  | orrosion      |           | Chloride a | ußer aus M | eerwasser    | Chloride aus Meerwasser |     |              |  |  |  |
| Nr. | Expositionsklassen                                                                                | X0 a                      | XC1   | XC2                 | XC3           | XC4       | XD1        | XD2        | XD3          | XS1                     | XS2 | XS3          |  |  |  |
| 1   | Höchstzulässiger w/z                                                                              | -                         | 0,    | 75                  | 0,65          | 0,60      | 0,55       | 0,50       | 0,45         |                         |     |              |  |  |  |
| 2   | Mindestdruckfestig-<br>keitsklasse c                                                              | C8/10                     | C16   | 5/20                | C20/25        | C25/30    | C30/37e    | C35/45 e   | C35/45e      |                         |     |              |  |  |  |
| 3   | Mindestzement-<br>gehalt d in kg/m3                                                               | -                         | 24    | 40                  | 260           | 280       | 300        | 320 b      | 320 b        |                         |     |              |  |  |  |
| 4   | Mindestzementge-<br>halt <sup>d</sup> bei Anrechnung<br>von Zusatzstoffen in<br>kg/m <sup>3</sup> | -                         | 24    | 40                  | 240           | 270       | 270        | 270        | 270          | Siehe<br>XD1            |     | Siehe<br>XD3 |  |  |  |
| 5   | Mindestluftgehalt in %                                                                            | -                         | -     |                     | -             | -         | -          | -          | -            |                         |     |              |  |  |  |
| 6   | Andere Anforde-<br>rungen                                                                         | -                         | -     |                     |               |           |            |            |              |                         |     |              |  |  |  |

- a Nur für Beton ohne Bewehrung oder eingebettetes Metall.
- $^{\rm b} \quad \text{F\"{u}r massige Bauteile (kleinste Bauteilabmessung } 80\,\text{cm) gilt der Mindestzementgehalt von } 300\,\text{kg/m}^3.$
- Gilt nicht f
  ür Leichtbeton.
- d Bei einem Größtkorn der Gesteinskörnung von 63 mm darf der Zementgehalt um 30 kg/m³ reduziert werden. In diesem Fall darf b nicht angewendet werden.
- Bei Verwendung von Luftporenbeton, z. B. aufgrund gleichzeitiger Anforderungen aus der Expositionsklasse XF, eine Festigkeitsklasse niedriger.

|     |                                                                                              |                                                                                                                                                                     |        |        |         |        |        | Beton  | angriff                 |          |                                |                                                    |          |                                |
|-----|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|--------|--------|--------|-------------------------|----------|--------------------------------|----------------------------------------------------|----------|--------------------------------|
|     |                                                                                              |                                                                                                                                                                     |        | Frosta | angriff |        |        |        | essive cher<br>Umgebung |          | Verschleißangriff <sup>h</sup> |                                                    |          |                                |
| Nr. | Expositionsklassen                                                                           | XF1                                                                                                                                                                 | XI     | -2     | X       | F3     | XF4    | XA1    | XA2                     | XA3      | XM1                            | XM                                                 | 2        | XM3                            |
| 1   | Höchstzulässiger w/z                                                                         | 0,60                                                                                                                                                                | 0,559  | 0,509  | 0,55    | 0,50   | 0,509  | 0,60   | 0,50                    | 0,45     | 0,55                           | 0,55                                               | 0,45     | 0,45                           |
| 2   | Mindestdruckfestigkeits-<br>klasse <sup>c</sup>                                              | C25/30                                                                                                                                                              | C25/30 | C35/45 | C25/30  | C35/45 | C30/37 | C25/30 | C35/45 e                | C35/45 e | C30/37 e                       | C30/37 e                                           | C35/45 e | C35/45 e                       |
| 3   | Mindestzementgehalt <sup>d</sup> in kg/m <sup>3</sup>                                        | 280                                                                                                                                                                 | 300    | 320    | 300     | 320    | 320    | 280    | 320                     | 320      | 300 i                          | 300 i                                              | 320 i    | 320 <sup>i</sup>               |
| 4   | Mindestzementgehalt <sup>d</sup> bei<br>Anrechnung von<br>Zusatzstoffen in kg/m <sup>3</sup> | 270                                                                                                                                                                 | g      | g      | 270     | 270    | 9      | 270    | 270                     | 270      | 270                            | 270                                                | 270      | 270                            |
| 5   | Mindestluftgehalt in %                                                                       | -                                                                                                                                                                   | f      | -      | f       | -      | fj     | -      | -                       | -        | -                              | -                                                  | -        | -                              |
| 6   | Andere Anforderungen                                                                         | Gesteinskörnungen mit Regelanforderungen und zusätzlich Widerstand gegen Frost bzw. Frost und Taumittel (siehe DIN 4226-1)  F4 MS <sub>25</sub> F2 MS <sub>18</sub> |        |        |         |        |        | -      | -                       | t        | -                              | Ober-<br>flächenbe-<br>handlung<br>des<br>Betons k | -        | Hartstoffe<br>nach<br>DIN 1100 |

- Siehe Fußnoten in Tabelle F.2.1.
- d Siehe Fußnoten in Tabelle F.2.1.
- e Siehe Fußnoten in Tabelle F.2.1.
- f Der mittlere Luftgehalt im Frischbeton unmittelbar vor dem Einbau muss bei einem Größtkorn der Gesteinskörnung von 8 mm ≥ 5,5 % Volumenanteil, 16 mm ≥ 4,5 % Volumenanteil, 32 mm ≥ 4,0 % Volumenanteil und 63 mm ≥ 3,5 % Volumenanteil betragen. Einzelwerte dürfen diese Anforderungen um höchstens 0,5 % Volumenanteil unterschreiten.
- 9 Zusatzstoffe des Typs II dürfen zugesetzt, aber nicht auf den Zementgehalt oder den w/z angerechnet werden.
- b Die Gesteinskörnungen bis 4mm Größtkorn müssen überwiegend aus Quarz oder aus Stoffen mindestens gleicher Härte bestehen, das gröbere Korn aus Gestein oder künstlichen Stoffen mit hohem Verschleißwiderstand. Die Körner aller Gesteinskörnungen sollen mäßig raue Oberfläche und gedrungene Gestalt haben. Das Gesteinskorngemisch soll möglichst grobkörnig sein.
- i Höchstzementgehalt 360 kg/m³, jedoch nicht bei hochfesten Betonen.
- j Erdfeuchter Beton mit  $w/z \le 0.40$  darf ohne Luftporen hergestellt werden.
- k Z. B. Vakuumieren und Flügelglätten des Betons
- Schutzmaßnahmen siehe 5.3.2



# Lösung Aufgabe 22:

Aufgabenteil c)

| rangasemen e <sub>j</sub> |   |       |       |     |   |   |   |   |    |
|---------------------------|---|-------|-------|-----|---|---|---|---|----|
| Korngruppe                | 0 | 0,125 | 0,250 | 0,5 | 1 | 2 | 4 | 8 | 16 |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |
|                           |   |       |       |     |   |   |   |   |    |